FIELD

Research outline

top 

Our brain and heart function using changes in membrane potential (electrical signals). How is the electrical signal generated and regulated? How do neurons in the brain use such electrical signals for their circuit formation during development? What happens if the regulation of membrane potentials goes wrong? We address these questions using state-of-the-art techniques in molecular biology, electrophysiology, and imaging.

Graduate School Graduate School of Medical and Dental Sciences
Course Advanced Therapeutics Course
Field Neurology
Department Physiology
Homepage http://www.kufm.kagoshima-u.ac.jp/~physiol2/

Homepage

Contact

TEL.+81-99-275-5234 / FAX.+81-99-275-5522

 Research interests

  • Activity-dependent formation of neural circuits in the cerebral cortex

  • Restoration of damaged circuits

  • Function and dysfunction of ion channels

Staff

tagawa1

Professor
Name Yoshiaki TAGAWA
Specialized field Neuroscience
Research interests Neural circuits in the cerebral cortex

Researche Repository


Lecturer
Name XU Jianjun
Specialized field Physiology of Ion channels, Molecular Biology
Research interests
  • Regulations of ion channels in nerve and muscle cells
  • Molecular and genetic studies on ion channels

Researche Repository


Lecturer
Name Etsuko MINOBE
Specialized field Physiology of Ion channels, Molecular Biology
Research interests
  • Regulations of ion channels in nerve and muscle cells
  • Molecular and genetic studies on ion channels

Researche Repository


Assistant Professor
Name Nao Nakagawa-Tamagawa
Specialized field Neuroscience
Research interests
  • Neural circuits in the cerebral cortex
  • Functional analysis of gap junction network in the developing neocortex 

Researche Repository

Research results

Yoshiaki TAGAWA

Developmental stage-specific spontaneous activity contributes to callosal axon projections .  eLife11 ( e72435 ) 1 - 15   2022

Long-Range Interhemispheric Projection Neurons Show Biased Response Properties and Fine-Scale Local Subnetworks in Mouse Visual Cortex .  Cerebral Cortex31 ( 2 ) 1307 - 1315   2021

Involvement of Calcium-Dependent Pathway and β Subunit-Interaction in Neuronal Migration and Callosal Projection Deficits Caused by the Cav1.2 I1166T Mutation in Developing Mouse Neocortex. Frontiers in Neuroscience, 15, 747951, 2021

Long-range interhemispheric projection neurons show biased response properties and fine-scale local subnetworks in mouse visual cortex. Cerebral Cortex, 31(2), 1307–1315, 2020.

自発神経活動と視覚系神経回路のスクラップ&ビルド  生体の科学, 70, 23-27, 2019.

Control of spontaneous Ca2+ transients is critical for neuronal maturation in the developing neocortex. Cerebral Cortex, 26, 106-117 2016.

Neuronal activity is not required for the initial formation and maturation of visual selectivity. Nature Neuroscience, 18(12), 1780-1788 2015.

Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex. Cerebral Cortex, 24, 1017-1029 2014.

Evidence for activity-dependent cortical wiring: Formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity. Journal of Neuroscience 27(25), 6760-6770, 2007.

Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nature Neuroscience 8(3), 380-388, 2005.


XU Jianjun

Regulation of cardiac Cav1.2 channels by calmodulin. International Journal of Molecular Sciences, 24 (7) ( 6409 ), 1-28, 2023.

Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson’s Disease. Front Cell Neurosci., 16:867385, 2022.

Purification of insoluble GST-fused and GST-cleaved Cav1.2 channel fragment by denaturation and renaturation. Protein Expr Purif.,160: 7-10, 2019.

PKA phosphorylation of Cav1.2 channel modulates the interaction of calmodulin with the C terminal tail of the channel. J Pharmacol Sci.,137(2):187-194, 2018.

A new interaction between proximal and distal C-terminus of Cav1.2 channels. J Pharmacol Sci.,133(4):240-246, 2017.

PKA and phosphatases attached to the Cav1.2 channel regulate channel activity in cell-free patches. American Journal of Physiology Cell Physiology, 310(2), C136-141, 2015.

Calmodulin reverses rundown of L-type Ca2+ channels in guinea pig ventricular myocytes. American Journal of Physiology Cell Physiology, 287(6), C1717-24, 2004.


Etsuko MINOBE

Regulation of cardiac Cav1.2 channels by calmodulin. International Journal of Molecular Sciences, 24 (7) ( 6409 ), 1-28, 2023.

Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson’s Disease .  Frontiers in Cellular Neuroscience16 ( 867385 ) 1 - 15   2022

Properties of Calmodulin Binding to Nav1.2 IQ Motif and Its Autism-Associated Mutation R1902C .  Neurochemical Research46 ( 3 ) 523 – 534, 2021

Calmodulin and ATP support activity of the Cav1.2 channel through dynamic interactions with the channel. The Journal of Physiolgy, 595(8), 2465-2477, 2017.

A new phosphorylation site in cardiac L-type Ca2+ channels (Cav1.2) responsible for its cAMP-mediated modulation. American Journal of Physiology Cell Physiology, 307, C999-C1009, 2014.

Calpastatin domain L is a partial agonist of the calmodulin-binding site for channel activation in Cav1.2 Ca2+ channels. The Journal of Biological Chemistry, 286, 39013-39022, 2011.

A region of calpastatin domain L that reprimes cardiac L-type Ca2+ channels. Biochemical and Biophysical Research Communications, 348, 288-294, 2006.

Nao Nakagawa-Tamagawa

Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons. Nature Communications 15, 2945, 2024

In Vivo Visualization of Spontaneous Activity in Neonatal Mouse Sensory Cortex at a Single-neuron Resolution .  Journal of Visualized Experiments ( 201 )   2023

In vivo two-photon calcium imaging of cortical neurons in neonatal mice .  STAR protocols 4(102245)   2023

Involvement of Calcium-Dependent Pathway and β Subunit-Interaction in Neuronal Migration and Callosal Projection Deficits Caused by the Cav1.2 I1166T Mutation in Developing Mouse Neocortex. Frontiers in Neuroscience, 15, 747951, 2021

Slow Dynamics in Microcolumnar Gap Junction Network of Developing Neocortical Pyramidal Neurons. Neuroscience 406(2019) 554-562, 2019

Lattice system of functionally distinct cell types in the neocortex.Science 358(6363), 610-615. 2017

Schizophrenia-like phenotypes in mice with NMDA receptor ablation in intralaminar thalamic nucleus cells and gene therapy-based reversal in adults.Translational psychiatry 7(2) e1047. 2017

Identity of neocortical layer 4 neurons is specified through correct positioning into the cortex.eLife 5. pii: e10907. 2016


Collaborations

 Kyoto University, Kyusyu University, The University of Tokyo, National Institute of Genetics, Sumitomo Dainippon Phama

Research Grant List

Yoshiaki TAGAWA
Project・Event / SpanResearch
科研費 基盤研究(C) 代表
2021-2023年度
大脳の投射先特異的な神経回路構築機構の解明
科研費 新学術領域研究公募 代表
2019-2020年度
神経活動に依存したスクラップアンドビルドによる大脳長距離神経回路の形成
科研費 新学術領域研究公募 代表            2017~2018年度 自発神経活動に依存した大脳長距離軸索投射の形成・再編・再生
 科研費 基盤研究(C) 代表             2016~2018年度 同期・非同期の自発神経活動による大脳皮質神経回路の形成とその障害 
 科研費 新学術領域研究公募 代表            2013~2014年度 哺乳期マウスの神経活動操作・記録実験による生後初期神経活動の役割の解明 
 戦略的創造研究推進事業CREST 分担            2010~2016  大脳皮質の機能的神経回路の構築原理の解明
 科研費 基盤研究(C) 代表            2011~2013年度  活動依存的メカニズムに基づく大脳皮質長距離軸索投射の再建
 科研費 新学術領域研究公募 代表            2011~2012年度  皮質2/3層興奮性細胞の特徴的な形態・機能獲得における神経活動の役割
 科研費 若手研究(B) 代表             2009~2010年度  大脳皮質の層特異的回路網構築における神経活動の役割
 科研費 若手研究(B) 代表              2006~2008年度  Cross-modal可塑性における代謝型グルタミン酸受容体の役割の解明
XU Jianjun
Project・Event / SpanResearch
科研費 基盤研究(C) 代表 
2019-2021年度
Molecular mechanism of self-regulation of Cav1.2 channel by channel cytoplasmic fragments
科研費 基盤研究(C) 一般、分担 
2015-2017年度
L型Caチャネル調節機構の総合的研究
科研費 基盤研究(C)一般、分担
2007~2008
L型CaチャネルのCa依存性促進と不活性化の分子機構
Etsuko MINOBE
Project・Event / SpanResearch
科研費 基盤研究(C)分担
2007~2008
L型CaチャネルのCa依存性促進と不活性化の分子機構
科研費 若手研究(B)代表
2009~2010
L型Caチャネルの活性制御におけるカルモジュリンの役割とその調節機構
科研費 基盤研究(B)分担
2009~2011
心筋Caチャネルの調節機構間相互作用
科研費 若手研究(B)代表
2011~2012
カルモジュリンをリンクさせた変異体を用いたL型Caチャネルの活性調節機構
科研費 基盤研究(C)代表
2013~2015
カルモジュリンによるL型Caチャネルの活性制御の分子機構の解明
科研費 基盤研究(C)代表
2016~2018
Cav1.2チャネルの活性とカルモジュリン結合部位との機能的相関の解明
科研費 基盤研究(C) 代表
2019-2021年度
2分子のカルモジュリンによるCav1.2チャネル不活性化機構の解明
科研費 基盤研究(C) 代表
2022-2024年度
カルモジュリンに制御されるCav1.2チャネルの2つの不活性化機構
Nao Nakagawa-Tamagawa
Project・Event / SpanResearch
科研費 基盤研究(B) 分担
2024-2027年度
生体光遺伝子を用いた同期的神経活動の誘発による脳回路発達の改善
科研費 学術変革領域研究(A)
公募研究 代表
2024-2025年度
細胞内分子構造動態解析による神経細胞極性の決定・維持メカニズム解明
科研費 基礎研究(C) 分担
2023-2025年度
大脳皮質視覚野臨界期の神経可塑性における乳酸代謝の寄与の解明
科研費 基盤研究(C) 代表
2022-2024年度
発達期の神経活動レベル調節による大脳半球間投射制御の解明
科研費 学術変革領域研究(B) 分担
2022-2024年度
発達期大脳における多元自発活動と回路形成の因果関係の解明
科研費 基盤研究(C) 分担
2020-2022年度
新生仔生体イメージングによる大脳皮質回路形成における自発的同期活動の役割の解明
科研費 基盤研究(C) 代表
2019-2021年度
細胞種特異的な神経回路形成への発達期gap junctionネットワークの役割
科研費 挑戦的萌芽研究 代表
2016~2018
大脳新皮質第5層のgap junctionネットワークによる皮質内基本構造形成

Homepage