Physiology
Research outline
Our brain and heart function using changes in membrane potential (electrical signals). How is the electrical signal generated and regulated? How do neurons in the brain use such electrical signals for their circuit formation during development? What happens if the regulation of membrane potentials goes wrong? We address these questions using state-of-the-art techniques in molecular biology, electrophysiology, and imaging.
Graduate School | Graduate School of Medical and Dental Sciences |
---|---|
Course | Advanced Therapeutics Course |
Field | Neurology |
Department | Physiology |
Homepage | http://www.kufm.kagoshima-u.ac.jp/~physiol2/ |
Contact
Research interests
-
Activity-dependent formation of neural circuits in the cerebral cortex
-
Restoration of damaged circuits
-
Function and dysfunction of ion channels
Staff
Professor
Name | Yoshiaki TAGAWA |
---|---|
Specialized field | Neuroscience |
Research interests | Neural circuits in the cerebral cortex |
Lecturer
Name | XU Jianjun |
---|---|
Specialized field | Physiology of Ion channels, Molecular Biology |
Research interests |
|
Lecturer
Name | Etsuko MINOBE |
---|---|
Specialized field | Physiology of Ion channels, Molecular Biology |
Research interests |
|
Assistant Professor
Name | Nao NAKAGAWA |
---|---|
Specialized field | Neuroscience |
Research interests |
|
Research results
Yoshiaki TAGAWA
Control of spontaneous Ca2+ transients is critical for neuronal maturation in the developing neocortex. Cerebral Cortex, 26, 106-117 2016.
Neuronal activity is not required for the initial formation and maturation of visual selectivity. Nature Neuroscience, 18(12), 1780-1788 2015.
Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex. Cerebral Cortex, 24, 1017-1029 2014.
Evidence for activity-dependent cortical wiring: Formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity. Journal of Neuroscience 27(25), 6760-6770, 2007.
Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nature Neuroscience 8(3), 380-388, 2005.
XU Jianjun
PKA and phosphatases attached to the Cav1.2 channel regulate channel activity in cell-free patches. American Journal of Physiology Cell Physiology, 310(2), C136-141, 2015.
Calmodulin reverses rundown of L-type Ca2+ channels in guinea pig ventricular myocytes. American Journal of Physiology Cell Physiology, 287(6), C1717-24, 2004.
Etsuko MINOBE
Calmodulin and ATP support activity of the Cav1.2 channel through dynamic interactions with the channel. The Journal of Physiolgy, 595(8), 2465-2477, 2017.
A new phosphorylation site in cardiac L-type Ca2+ channels (Cav1.2) responsible for its cAMP-mediated modulation. American Journal of Physiology Cell Physiology, 307, C999-C1009, 2014.
Calpastatin domain L is a partial agonist of the calmodulin-binding site for channel activation in Cav1.2 Ca2+ channels. The Journal of Biological Chemistry, 286, 39013-39022, 2011.
A region of calpastatin domain L that reprimes cardiac L-type Ca2+ channels. Biochemical and Biophysical Research Communications, 348, 288-294, 2006.
Nao NAKAGAWA
Lattice system of functionally distinct cell types in the neocortex.Science 358(6363), 610-615. 2017
Schizophrenia-like phenotypes in mice with NMDA receptor ablation in intralaminar thalamic nucleus cells and gene therapy-based reversal in adults.Translational psychiatry 7(2) e1047. 2017
Identity of neocortical layer 4 neurons is specified through correct positioning into the cortex.eLife 5. pii: e10907. 2016
Collaborations
Kyoto University, Kyusyu University, The University of Tokyo, National Institute of Genetics, Sumitomo Dainippon Phama
Research Grant List
Yoshiaki TAGAWA
Project・Event / Span | Research |
---|---|
科研費 新学術領域研究公募 代表 2017~2019 | 自発神経活動に依存した大脳長距離軸索投射の形成・再編・再生 |
科研費 基盤研究(C) 代表 2016~2019 | 同期・非同期の自発神経活動による大脳皮質神経回路の形成とその障害 同期・非同期の自発神経活動による大脳皮質神経回路の形成とその障害 |
科研費 新学術領域研究公募 代表 2013~2015 | 哺乳期マウスの神経活動操作・記録実験による生後初期神経活動の役割の解明 哺乳期マウスの神経活動操作・記録実験による生後初期神経活動の役割の解明 |
戦略的創造研究推進事業CREST 分担 2010~2016 | 大脳皮質の機能的神経回路の構築原理の解明 |
科研費 基盤研究(C) 代表 2011~2014 | 活動依存的メカニズムに基づく大脳皮質長距離軸索投射の再建 |
科研費 新学術領域研究公募 代表 2011~2013 | 皮質2/3層興奮性細胞の特徴的な形態・機能獲得における神経活動の役割 |
科研費 若手研究(B) 代表 2009~2011 | 大脳皮質の層特異的回路網構築における神経活動の役割 |
科研費 若手研究(B) 代表 2006~2009 | Cross-modal可塑性における代謝型グルタミン酸受容体の役割の解明 |
XU Jianjun
Project・Event / Span | Research |
---|---|
科研費 基盤研究(C)一般、分担 2007~2008 |
L型CaチャネルのCa依存性促進と不活性化の分子機構 |
Etsuko MINOBE
Project・Event / Span | Research |
---|---|
科研費 基盤研究(C)分担 2007~2008 |
L型CaチャネルのCa依存性促進と不活性化の分子機構 |
科研費 若手研究(B)代表 2009~2010 |
L型Caチャネルの活性制御におけるカルモジュリンの役割とその調節機構 |
科研費 基盤研究(B)分担 2009~2011 |
心筋Caチャネルの調節機構間相互作用 |
科研費 若手研究(B)代表 2011~2012 |
カルモジュリンをリンクさせた変異体を用いたL型Caチャネルの活性調節機構 |
科研費 基盤研究(C)代表 2013~2015 |
カルモジュリンによるL型Caチャネルの活性制御の分子機構の解明 |
科研費 基盤研究(C)代表 2016~2018 |
Cav1.2チャネルの活性とカルモジュリン結合部位との機能的相関の解明 |
Nao NAKAGAWA
Project・Event / Span | Research |
---|---|
科研費 挑戦的萌芽研究 代表 2016~2018 |
大脳新皮質第5層のgap junctionネットワークによる皮質内基本構造形成 |