| A Master Cours | se Class Style | Lecture | | FB : Compulsory 2 credits AM : Compulsory 2 credits GM : Compulsory 2 credits | | Fiscal
year | 2020 | | |--|---|--|--|---|--|--------------------|------|--| | Course Title | Genes and Dis | Genes and Diseases | | Numbering code FB: GMDMFB10 AM: GMDMAM10 AM: GMDMGM10 | | 0 0 2 | | | | Objectives | | To understand genome medicine through learning of state-of-the-art molecular biology and genome editing technologies | | | | | | | | Semester | The first half of t | The first half of the 1st grade. 6th Period (18:00 - 19:30) Tuesdays | | | | | | | | Location | | | | | | | | | | Couse Director Hiroyuki Okuno (Professor, Biochemistry and Molecular Biology) [okuno@m.kufm.kagoshima-u.ac.jp] | | | | | | | | | | GIO | To learn current | To learn current advances and limitations of genome research in medical sciences | | | | | | | | SBO | To be able to explain methods and technologies in genome editing and recombinant DNA technology To be able to summarize physiological regulation through gene expression To be able to discuss about environmental factors that influence gene expression To be able to discuss about relationship between genomic mutations and diseases To be able to explain what "tailor-made (order-made)" medicine is | | | | | | | | | 6. To be able to summarize current methods and techniques for genetic diagnosis Outline (90 minutes x 15 lectures) Instructor | | | | | | | | | | Introduction/Orientation: Genome medicine and medical science (4/28) | | | | | | Hiroyuki Okuno | | | | Understanding of gene function with developmental engineering (5/12) | | | | | | Masahiro Sato | | | | | | | | | | Masahiro Sato | | | | Regulation of neural cell differentiation through cell adhesion molecules (5/26) | | | | | | Yasuo Takeda | | | | 5. From genome project to tailor-made medicine Yasuo Takeda | | | | | | | 1 | | | Anti-cancer agent-resistant mechanisms revealed by pharmacokinetics (6/9) | | | | | | Tatsuhiko Furukawa | | | | 7. Cancer, metabolism, and epithelial-mesenchymal transition (EMT) (6/16) | | | | | | Misako Haraguchi | | | | 8. Thymidine phosphorylase: the tumor malignant transformation factor (6/23) | | | | | | Tatsuhiko Furukawa | | | | 9. Protein-protein interaction and signal transduction (6/30) | | | | | | Shosei Kishida | | | | 10. Vesicle transport (7/7) | | | | | | Shosei Kishida | | | | 11. Genomic drug discovery (7/13) | | | | | | Atsuro Miyata | | | | 12. Pharmacogenomics (7/20) | | | | | | Atsuro Miyata | | | | 13. Development and clinical application of gene therapy technology and regenerative | | | | | | Ken-Ichiro Kosai | | | | medicine (7/27) | | | | | | Yasuo Takeda | | | | 14. Genes that regulate cerebral neural circuits for emotion (8/4) | | | | | | Yuji Kiyama | | | | 15. Genomic mutations that cause neurodevelopmental/neurological disorders (8/11) | | | | | | Hiroyuki Okuno | | | | Teaching Materials No specific text books are suggested. Handouts will be provided depending on topics. | | | | | | | | | | Grading Methods | Record cards will be made based on attendance and reports, depending on instructors. | | | | | | | | | 6 | 1 | | | | | | | | | Contact | | | | | | | | | | Others | | | | | | | | |